Abstract
We present maps of the topographic roughness of the Moon at hectometer and kilometer scales. The maps are derived from range profiles obtained by the Lunar Orbiter Laser Altimeter (LOLA) instrument onboard the Lunar Reconnaissance Orbiter (LRO) spacecraft. As roughness measures, we used the interquartile range of profile curvature at several baselines, from 115m to 1.8km, and plotted these in a global map format. The maps provide a synoptic overview of variations of typical topographic textures and utilize the exceptional ranging precision of the LOLA instrument. We found that hectometer-scale roughness poorly correlates with kilometer-scale roughness, because they reflect different sets of processes and time scales. Hectometer-scale roughness is controlled by regolith accumulation and modification processes and affected by the most recent events, primarily, geologically recent (1–2Ga) meteoritic impacts. Kilometer-scale roughness reflects major geological (impact, volcanic and tectonic) events in earlier geological history. Young large impact craters are rough, and their roughness decreases with age. The global roughness maps revealed a few unusually dense clusters of hectometer- and decameter-size impact craters that differ in their morphology and settings from typical secondary crater clusters and chains; the origin of these features is enigmatic. The maps can assist in the geological mapping of the lunar maria by revealing contacts between volcanic plain units. The global roughness maps also clearly reveal cryptomaria, old volcanic plains superposed by younger materials, primarily crater and basin ejecta.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.