Abstract

Soils of the 62-cm deep Apollo 16 double drive tube 60013/14 are mature at the top and submature at the bottom. Modal analyses of 5529 grains from the 90-150 micrometers and the 500-1000 micrometers fractions from 12 levels of the core show that, in general, agglutinate abundance increases somewhat monotonically to the top and mimics the Is/FeO profile. There is a general decrease in the modal abundance of monomineralic fragments towards the top, suggesting that agglutinates were formed in part at the expense of monomineralic grains, especially feldspars, which are by far the most abundant mineral in these soils. In detail, the top 27 cm of the core differs from the bottom 21 cm, and the middle 14 cm is intermediate in its properties. In the upper segment, variations in the abundances of feldspars correspond with those of feldspathic fragmental breccias and cataclastic anorthosites; in the bottom segment, a similar but weak correspondence between feldspars and crystalline matrix breccias is observed. Mixing of the comminuted products of these three rock types likely produced the bulk of the core material. Many single feldspars in all size fractions are remarkably fresh, show no damage from shock, and are similar in appearance to the large feldspars in anorthosites and feldspathic fragmental breccias, which we consider to be the primary sources of single feldspars in this core. Major (Na, Al, Si, K, Ca) and minor (Fe, Ba) element analyses of 198 single feldspar grains indicate the presence of only one population of feldspars, which is consistent with our interpretation of feldspar provenance. Classification of 890 monomineralic feldspar, olivine, pyroxene, and glass spherules on the basis of the presence or absence of thin brownish coating--related to reworking at the surface--shows that coated grains are much more abundant in the top segment than in the bottom segment. A comparison with the mixing and maturation model (McKay et al., 1977) of soils in the core 60009/10, some 60 m away from 60013/14, shows that mixtures of an immature, nearly pure plagioclase soil (dominant in 60009/10) and another immature, crystalline breccia-rich soil (dominant in 60013/14) may have matured through in situ reworking to produce the soils under investigation. We conclude that the soils in this core are products of mixing along soil evolution Path 2 of McKay et al. (1974). Superimposed on that soil column is the reworking of the upper part, which has evolved more recently along Path 1. This core thus represents a consanguineous column of the lunar regolith with an upper reworked segment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.