Abstract

A classification of over 200 lunar mare domes shows that they have two major modes of occurrence: (1) low, flat, generally circular structures with convex shapes, slopes less than about 5°, and displaying summit craters, and (2) irregular structures often adjacent to highland regions and rarely containing summit craters. On the basis of morphologic and morphometric similarities, the first mode of occurrence appears to be analogous to small terrestrial shield volcanoes, and to represent primary volcanic constructs, while the second class of domes appears to result from secondary volcanic effects (flooding of highland material to produce kipukas and draping of lavas to produce irregular dome-like topography). Domes comparable to small shield volcanoes generally range from 3–17 km in diameter and up to several hundred meters in height and occur predominantly in groupings in the lunar equatorial region in northeast Tranquillitatis (Cauchy area), between Kepler and Copernicus (Hortensius area), and in the Marius Hills. In the Marius Hills, domes generally lack summit craters and have a rough surface texture formed in part by superposed cones and steep-sided flows. Elsewhere, domes representing volcanic sources are smooth-surfaced and usually contain a summit crater. These features are similar in general morphology to small terrestrial lava shields. They are generally intermediate in volume, slope, and height between small shields of terrestrial basaltic plains (such as the Snake River Plains) and larger Icelandic shields. Summit craters on lunar domes are considerably larger than craters on terrestrial shields of comparable diameters, apparently due to a combination of factors, including vent enlargement during extrusion, possibly higher lunar extrusion rates, different amounts of collapse, and impact erosion. Most vent-related domes appear to be associated with, and are thus approximately the same age as, surrounding lava plains, although relationships in specific areas have not yet been established. On the basis of age ranges of mare deposits established by Apollo samples, mare vent-related domes formed over an approximately one billion year period starting about 3.7 b.y. ago. Extrusion rates were apparently relatively low compared to the very high values characteristic of flows associated with major lunar sinuous rilles and terrestrial flood basalts, but may have been relatively high compared to similar terrestrial shields. Large shield volcanoes equivalent to the terrestrial Hawaiian-type or to the martian edifices such as Olympus Mons, do not occur on the Moon. Lack of these features may be due to the low viscosities and high effusion rates typical of many lunar eruptions and the lack of continuous eruptions from single sources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.