Abstract

AbstractNovel EuIII coordination polymers [Eu(hfa)3(dpt)]n (dpt: 2,5‐bis(diphenylphosphoryl)thiophene) and [Eu(hfa)3(dpedot)]n (dpedot: 2,5‐bis(diphenylphosphoryl)ethylenedioxythiophene) with hydrogen‐bonded zipper structures are reported. The coordination polymers are composed of EuIII ions, hexafluoroacetylacetonato ligands, and thiophene‐based phosphine oxide bridges. The zig‐zag orientation of single polymer chains induced the formation of densely packed coordination structures with multiple intermolecular interactions, resulting in thermal stability above 300 °C. They exhibit a high intrinsic emission quantum yield (ca. 80 %) due to their asymmetrical and low‐vibrational coordination structures around EuIII ions. Furthermore, the characteristic alternative orientation of substituents also contributes to the dramatically high ligand‐to‐metal energy transfer efficiencies of up to 80 % in the solid state.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.