Abstract

Background ContextPosterior decompression with spinal instrumentation and fusion is associated with well-known complications. Alternatives that include decompression and restoration of native stability of the motion segment without fusion continue to be explored, however, an ideal solution has yet to be identified. PurposeThe aim of this study was to test two different synthetic lumbar vertebral stabilization techniques that can be used after unilateral total facetectomy. Study designBiomechanical cadaveric study. MethodsTwelve spinal segments were biomechanically tested after unilateral total facetectomy and stabilized with a FiberTape cerclage. The cerclage was pulled through the superior and inferior spinous process (interspinous technique) or through the spinous process and around both laminae (spinolaminar technique). The specimens were tested after (1) unilateral total facetectomy, (2) interspinous vertebropexy and (3) spinolaminar vertebropexy. The segments were loaded in flexion-extension (FE), lateral shear (LS), lateral bending (LB), anterior shear (AS) and axial rotation (AR). ResultsUnilateral facetectomy increased native ROM in FE by 10.6% (7.6%–12.6%), in LS by 25.8% (18.7%–28.4%), in LB 7.5% (4.6%–12.7%), in AS 39.4% (22.6%–49.2%), and in AR by 27.2% (15.8%–38.6%). Interspinous vertebropexy significantly reduced ROM after unilateral facetectomy: in FE by 73% (p=.001), in LS by 23% (p=.001), in LB by 13% (p=.003), in AS by 16% (p=.007), and in AR by 20% (p=.001). In FE and LS the ROM was lower than in the baseline/native condition. In AS and AR, the baseline ROM was not reached by 17% and 1%, respectively. Spinolaminar vertebropexy significantly reduced ROM after unilateral facetectomy: in FE by 74% (p=.001), in LS by 24% (p=.001), in LB by 13% (p=.003), in AS by 28% (p=.004), and in AR by 15 % (p=.001). Baseline ROM was not reached by 9% in AR. ConclusionInterspinous vertebropexy seems to sufficiently counteract destabilization after unilateral total facetectomy, and limits range of motion in flexion and extension while avoiding full segmental immobilization. Spinolaminar vertebropexy additionally restores native anteroposterior stability, allowing satisfactory control of shear forces after facetectomy. Clinical significanceLumbar vertebropexy seems promising to counteract the destabilizating effect of facetectomy by targeted stabilization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.