Abstract

ObjectiveHigh-quality chest-compressions are of paramount importance for survival and good neurological outcome after cardiac arrest. However, even healthcare professionals have difficulty performing effective chest-compressions, and quality may be further reduced during transport. We compared a mechanical chest-compression device (Lund University Cardiac Assist System [LUCAS]; Jolife, Lund, Sweden) and manual chest-compressions in a simulated cardiopulmonary resuscitation scenario during helicopter rescue. MethodsTwenty-five advanced life support–certified paramedics were enrolled for this prospective, randomized, crossover study. A modified Resusci Anne manikin was employed. Thirty minutes of training was allotted to both LUCAS and manual cardiopulmonary resuscitation (CPR). Thereafter, every candidate performed the same scenario twice, once with LUCAS and once with manual CPR. The primary outcome measure was the percentage of correct chest-compressions relative to total chest-compressions. ResultsLUCAS compared to manual chest-compressions were more frequently correct (99% vs 59%, P < .001) and were more often performed correctly regarding depth (99% vs 79%, P < .001), pressure point (100% vs 79%, P < .001) and pressure release (100% vs 97%, P = .001). Hands-off time was shorter in the LUCAS than in the manual group (46 vs 130 seconds, P < .001). Time until first defibrillation was longer in the LUCAS group (112 vs 49 seconds, P < .001). ConclusionsDuring this simulated cardiac arrest scenario in helicopter rescue LUCAS compared to manual chest-compressions increased CPR quality and reduced hands-off time, but prolonged the time interval to the first defibrillation. Further clinical trials are warranted to confirm potential benefits of LUCAS CPR in helicopter rescue.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.