Abstract

Excessive fibroblast adhesion and proliferation on the surface of medical implants (such as catheters, endotracheal tubes, intraocular lenses, etc) can lead to major postsurgical complications. This study showed that when coated on tissue culture polystyrene, lubricin, a nanostructured mucinous glycoprotein found in the synovial fluid of joints, decreased fibroblast density for up to 2 days of culture compared to controls treated with phosphate buffered saline (PBS). When examining why, similar antifibroblast density results were found when coating tissue culture polystyrene with bovine submaxillary mucin (BSM), an even smaller protein closely related to the central subregion of lubricin. Additionally, results from this study demonstrated that in contrast to BSM or controls (PBS-coated and non-coated samples), lubricin was better at preserving the health of nonadherent or loosely adherent fibroblasts; fibroblasts that did not adhere or loosely adhered on the lubricin-coated tissue culture polystyrene adhered and proliferated well for up to an additional day when they were reseeded on uncoated tissue culture polystyrene. In summary, this study provides evidence for the promise of nanostructured lubricin (and to a lesser extent BSM) to inhibit fibroblast adhesion and growth when coated on medical devices; lubricin should be further explored for numerous medical device applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.