Abstract
Bending vibration of flat plates is controlled using patches of active constrained layer damping (ACLD) treatments. Each ACLD patch consists of a visco-elastic damping layer which is sandwiched between two piezo-electric layers. The first layer is directly bonded to the plate to sense its vibration and the second layer acts as an actuator to actively control the shear deformation of the visco-elastic damping layer according to the plate response. With such active/passive control capabilities the energy dissipation mechanism of the visco-elastic layer is enhanced and its damping characteristics of the plate vibration is improved. A finite element model is developed to analyze the dynamics and control of flat plates which are partially treated with multi-patches of ACLD treatments. The model is validated experimentally using an aluminum plate which is 0.05 cm thick, 25.0 cm long, and 12.5 cm wide. The plate is treated with two ACLD patches. Each of which is made of SOUNDCOAT (Dyad 606) visco- elastic layer sandwiched between two layers of AMP/polyvinylidene fluoride (PVDF) piezo- electric films. The piezo-electric axes of the patches are set at zero degrees relative to the plate longitudinal axis to control the bending mode. The effect of the gain of a proportional control action on the system performance is presented. Comparisons between the theoretical predictions and the experimental results suggest the validity of the developed finite element model. Also, comparisons with the performance of conventional passive constrained layer damping clearly demonstrate the merits of the ACLD as an effective means for suppressing the vibration of flat plates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.