Abstract

We report investigation of light-induced damage threshold (LIDT) in purified silica (transmission band down to 160 nm) by 350 fs laser pulses at the wavelength of 795 nm and 498 nm. Focusing a single pulse by a high numeric aperture NA equals 1.35 microscope objective lens results in one of the lowest single-show bulk LIDT values reported so far, 5 J/cm<SUP>2</SUP>, while the surface ablation threshold is 2.5 J/cm<SUP>2</SUP> with both values being well below the critical self-focusing power in silica. Furthermore, we report the peculiarities of damage by two-pulse irradiation (duration experimental data and numeric simulation, which takes into account optical free-carrier generation and relaxation, demonstrates that these processes can explain the measured self-focusing, super-continuum generation, and light-induced damage threshold values. We argue that use of high numeric aperture objective, despite substantial temporal pulse stretching, results in tight focusing which is capable of overcoming the beam self-focusing, and the resulting fabrication quality is comparable to that obtained using shorter pulses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.