Abstract
In signal processing, it is often necessary to decompose sampled data into its principal components. In adaptive sensor array processing, for example, Singular Value Decomposition (SVD) and/or Eigenvalue Decomposition (EVD) can be used to separate sensor data into “signal” and “noise” subspaces. Such decompositions are central to a number of techniques, such as MUSIC, ESPIRIT, and the Eigencanceller. Unfortunately, SVD and EVD algorithms are computationally intensive. When the underlying signals are nonstationary, “fast subspace tracking” methods provide a far less complex alternative to standard SVD methods. This paper addresses a class of subspace tracking methods known as “QR-Jacobi methods.” These methods can track the <i>r</i> principal eigenvectors of a correlation matrix in <i>O(Nr) </i>operations, where <i>N</i> is the dimensionality of the correlation matrix. Previously, QR-Jacobi methods have been formulated to track the principal eigenvectors of an “exponentially windowed” data correlation matrix. Finite duration data windowing strategies were not addressed. This paper extends the prior QR-Jacobi methods so as to implement rectangular sliding data windows, as well as other windows. Illustrated examples are provided.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.