Abstract
Copolymers of 4-tert-butoxycarbonyloxystyrene (TBS) and sulfur dioxide (SO2) have been found to act as sensitive x-ray ((lambda) equals 14 angstrom) and moderately sensitive electron-beam, single component, chemically amplified, aqueous base soluble positive acting resists. The x-ray and electron-beam response of these materials was a function of copolymer composition, where an increase in the sulfur dioxide content enhanced the resist sensitivity. Initial investigation into the radiation induced reaction mechanism provided evidence that acid formation occurs via polymer main chain scission. It is proposed that at the scission sites radical species are produced which in turn are responsible for the formation of the acidic moieties. Heat treatment of resist films after exposure converted the copolymers to poly(4- hydroxystyrene sulfone) and permitted the exposed film areas to be developed in an aqueous base solution. Preliminary lithographic evaluation has resolved 0.5 micrometers line and space patterns in 0.65 micrometers thick 1.75/1 TBS/SO2 resist films using an x-ray dose of 10 mJ/cm2. For a resist having a composition of 2.1/1 TBS/SO2, 0.25 micrometers line and space features where delineated using an electron-beam dose of 90 (mu) C/cm2 at 30 KV. In addition, minimal surface residue of the exposed areas of the resist film after development was observed when the time interval between the exposure and the post-exposure baking steps was varied from 2-10 minutes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.