Abstract

In standard DCT coding schemes like MPEG, the sequences compression is achieved by motion compensation, transformation, quantization, and entropy coding. In this paper, we have followed the same path by adapting to the image signal the elements of the coding scheme. The motion compensation is achieved by a block-matching method, where the size of the blocks is adapted to the signal. Great attention has been paid to the relevance of the motion field. Combined with the motion compensation, the two fields of each frame are merged, taking into account the measured motion vectors, to compose a pseudo-progressive frame. The encoding is applied to this `motion-compensated progressive' frame. A wavelet decomposition is then applied on each (inter or intra) frame. Such a transform, intrinsically owning linear- phase and perfect reconstruction properties, has been optimized for maximizing a perceptually weighted coding gain. The wavelet coefficients are thereafter vector-quantized, in order to reach the maximum perceptual SNR : frequency weighting is taken into account. The relevance of the measured vector field allows a precise spatio-temporal quantization optimization. The vectors are entropy coded taking into account the remaining inter-band dependence, by an adapted entropy code. Results obtained from 1 Mbit/s to 8 Mbit/s are shown for moving sequences at the conference.© (1993) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.