Abstract

Hemoglobin (Hb) within single erythrocytes (red blood cells), adsorbed on poly-lysine coated glass surfaces, was studied using resonance Raman spectroscopy and global Raman imaging. The erythrocytes were found to be sensitive to both surface adsorption and to the laser light. Topological changes of the cell membrane were observed immediately after cell adsorption in Raman images. We observed a photo-induced increase of the fluorescence background occurring simultaneously with a decrease in the Hb Raman signal. Concurrent changes in Raman spectra revealed a conversion of oxy-Hb to the met-Hb state. However, at a low accumulated photon dose, the preparation method enabled the recording of Raman spectra during the oxygenation cycle of a single red blood cell in buffer, which shows that Hb was in an in-vivo environment. Thus, Raman spectroscopy of functional Hb in isolated red blood cells is feasible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.