Abstract

In this paper, we present some fundamental theoretical results pertaining to the question of how many randomly selected labelled example points it takes to reconstruct a set in euclidean space. Drawing on results and concepts from mathematical morphology and learnability theory, we pursue a set-theoretic approach and demonstrate some provable performances pertaining to euclidean-set-reconstruction from stochastic samples. In particular, we demonstrate a stochastic version of the Nyquist Sampling Theorem - that, under weak assumptions on the situation under consideration, the number of randomly-drawn example points needed to reconstruct the target set is at most polynomial in the performance parameters and also the complexity of the target set as loosely captured by size, dimension and surface-area. Utilizing only rigorous techniques, we can similarly establish many significant attributes - such as those relating to robustness, cumulativeness and ease-of- implementation - pertaining to smoothing over labelled example points. In this paper, we formulate and demonstrate a certain fundamental well-behaving aspect of smoothing.© (1997) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.