Abstract

For applications in ultra-large scale integration, low pressure, high density plasmas are being developed for etching and deposition of thin films. To control critical parameters such as the flux and energy distribution of ions impacting surfaces, it is necessary to understand how these parameters are influenced by physical and electromagnetic design. In this work, we report measurements of ion velocity distributions in Ar/He and Cl2/He electron cyclotron resonance plasmas. Using Doppler-shifted laser-induced fluorescence spectroscopy, we measure metastable Ar and Cl ion velocity distributions parallel and perpendicular to the magnetic field as a function of magnetic field amplitude, pressure, and microwave power. We also examine the effects of the wafer platen on the distribution functions by repeating the measurements after removing the platen. We find nearly isotropic ion velocity distributions when the source is operated as a magnetic mirror and the He partial pressure is low; higher He pressures tend to cool the parallel velocity distribution. Downstream, we consistently observe bimodal ion velocity distributions: the fast component, created in the source, follows magnetic flux lines into the reactor; the slow component, created mostly where the plasma expands from the source into the reaction chamber, is more isotropic. The relative amplitudes of these two components, the average ion energy, and the ion energy distribution are easily controlled by changing pressure and magnetic field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.