Abstract

The cytochrome absorption makes the photon act as a carrier of biological energy as the cytochrome system in the mitochondria can absorb the photon and stimulate electron transport, which generates bioenergy in the form of ATP from ADP. Many feel that the respiratory chain is at the base of any effects that laser therapy might have. However, there is a kind of effect of He-Ne laser irradiation on red blood cells (RBC) in which there is no mitochondria. In other words, the photon acts also as a carrier of biological information. Recently, Liu et al have studied the information biology on low intensity laser by use of time approach on generation of biological information, and put forward the membrane-receptor-mediated signal transduction mechanism, i.e., the biological information model of low- intensity laser (BIML) and the biological information transformation model (BITML), to explain the biomodulation function. As the frequency of the absorption light of membrane receptors is greater than the one of visible laser irradiation, the membrane absorption of visible light is non-resonant, and its transition rate is extraordinarily small, but can be amplified by the coherent state of the identical and independent membrane receptors of a pathological cell. In this paper, we apply these results to study Information biology on low intensity laser irradiation effects on RBC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.