Abstract

A family of imaging photon-counting detector systems, the multi-anode microchannel arrays (MAMAs), are now under active development for use on a number of space astrophysics missions at far-ultraviolet and extreme-ultraviolet wavelengths. MAMA detector systems are currently being fabricated for use in instruments on the European Space Agency (ESA)/NASA Solar Heliospheric Observatory (SOHO) spacecraft and for a second generation instrument on the NASA/ESA Hubble Space Telescope. The components of the MAMA detector system consist of, (1) the open or sealed tube assembly containing the photocathode, the high-gain curved-channel microchannel plate, and the readout electrode array, and (2) the associated analog and digital electronics circuits. The configurations of the different MAMA detector systems are described in some detail and the use of custom application specific integrated circuits in the electronics is discussed. The performance characteristics of the MAMA detectors are described and compared with those of alternative imaging photon-counting detector systems. Examples of both ground-based data and flight data from sounding rockets are shown.© (1993) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.