Abstract

Currently available radar instruments are not capable of guiding a helicopter pilot safely during approach and landing under poor visibility conditions. This is due to lack of resolution and lack of elevation information. The RADAR technology that promises to improve this situation is called ROSAR, which stands for Synthetic Aperture Radar based on ROtating Antennas. In 1992 Eurocopter and Daimler- Benz Aerospace investigated the feasibility of an imaging radar based on ROSAR technology. The objective was to provide a video-like image with a resolution good enough to safely guide a helicopter pilot under poor visibility conditions. ROSAR proved to be especially well suited for this type of application since it allows for a stationary carrier platform: Rotating arms with antennas integrated into their tips can be mounted on top of the rotor head. In this way the scanning region of the antennas can cover 360 degree(s). While rotating, the antenna scans the environment from various visual angles without assuming a movement of the carrier platform itself. The signal is then processed as a function of the rotation angle of the antenna movement along a circular path. A radar system of this type is now under development at Eurocopter and Daimler-Benz Aerospace: HeliRadar. HeliRadar is designed as a frequency modulated continuous wave radar working in a frequency band around 35 GHz. The complete transmitter/receiver system is fixed mounted on top of the rotating axis of the helicopter. The received signals are transferred through the center of the rotor axis down into the cabin of the helicopter, where they are processed in a high performance digital signal processor (processing power: 10 GFLOPS). First encouraging results have been obtained from an experiment with `slow motion' movement of the antenna arm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.