Abstract

We devise a fast algorithm for surface profiling by white- light interferometry. It is named the SEST algorithm after Square Envelope function estimation by Sampling Theory. Conventional methods for surface profiling by white-light interferometry based their foundation on digital signal processing technique, which is used as an approximation of continuous signal processing. Hence, these methods require narrow sampling intervals to achieve good approximation accuracy. In this paper, we introduce a totally novel approach using sampling theory. That is, we provide a generalized sampling theorem that reconstructs a square envelope function of a white-light interference fringe from sampled values of the interference fringe. A sampling interval in the SEST algorithm is 6-14 times wider than those of conventional methods when an optical filter of the center wavelength 600 nm and the bandwidth 60 nm is used. The SEST algorithm has been installed in a commercial system which achieved the world's fastest scanning speed of 42.75 micrometers /s. The height resolution of the system lies in the order of 10 nm for a measurement range of greater than 100 micrometers .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.