Abstract

A novel micromachined electrostatically controlled deformable mirror has been fabricated and characterized. This device combines the fields of microinstruments, adaptive optics and controls to form a silicon-based mirror assembly that is relatively simple to process, inexpensive, lightweight, and integrable with drive and sensing electronics. Electrostatic control of a thin membrane mirror is demonstrated with low voltage actuation and without the need for complex construction of PZT or other translator-type arrays. In addition, the low- stress Si-rich SixNy film used as the deformable membrane mirror is thermally matched to the silicon supporting frame. Custom design of the mirror shape can be implemented by redesigning the electrode pattern on an insulating substrate separate from the thin film mirror. Test results from a pull-only circular mirror with a single actuator are presented as a proof of concept for low voltage actuation of a low-stress SixNy flexible membrane. The SixNy which forms the membrane is under tensile stress. This tensile stress increase the voltage required for deflection of the membrane, but insures a linear relationship between the center deflection of the mirror and the applied pressure. This should significantly simplify the controls algorithm required for closed-loop operation of this device.© (1993) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.