Abstract

Image transmission is a very effective method of conveying information for a large number of applications. Vector quantization (VQ) is the most computational demanding technique that uses a finite set of vectors as its mapping space. It was shown that VQ is capable of producing good reconstructed image quality. However, it has the problem of computation complexity in the codebook creation part. We have found that neural networks is a fast alternative approach to create the codebooks. Neural network appears to be particularly well-suited for VQ applications. In neural networks approach we use parallel computing structures. Also, most neural network learning algorithms are adaptive and can be used to produce effective scheme for training the vector quantizer. A new method for designing the vector quantizer called Concentric-Shell Partition Vector Quantization is introduced. It first partitions the image vector space into concentric shells and then searches for the smallest possible codebook to represent the image vector space, while adhering to the visual perceptive qualities such as edges and textures in the image representation. In this paper, we are presenting neural networks using the frequency sensitive learning algorithm and the concentric-shell partitioning approach for VQ. This new technique will show the simplicity of the neural network model while retaining the computational advantages.© (1992) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.