Abstract
Ultrasound contrast agents are bubbles, 1-10 microns in radius, encapsulated by a lipid, protein, polymer or fluid shell. The agents have been used to distinguish the acoustic scattering signatures of blood from those of the surrounding tissue. This is possible due to the nonlinear response of the agent, which is similar to that of a free gas bubble. Upon sufficient forcing the agents will oscillate nonlinearly about their equilibrium radius, and for specific conditions, produce nonlinear resonance responses which are integer multiples of the primary resonance. Ultrasound tissue perfusion studies have been developed which are based on the destruction of contract agents coupled to the measurement of blood flow. Nevertheless, many outstanding issues remain in contrast agent design especially with respect to emerging applications. Even with the use of higher order harmonics there is a lack of an acoustic signature or destruction mechanism at frequencies above approximately 5.0 MHz with conventional agents. The design and use of a high frequency contrast agent is addressed by exploiting the multiple scattering response of agents modled as spherical elastic shells. Also considered is the nonlinear response of elastic-shelled agents. The considerations of shells modeled as linear and nonlinear elastic materials are discussed. The use of contrast agents for targeted drug delivery has recently received much attention. More specifically, the ImaRx Corporation (Tucson, Arizona) has developed thick fluid shelled agents, which release suspended taxol-based drugs from their shells upon destruction. Shape instabilities and surface waves correspond with the fragmentation and destruction of the agents. Finally, the interaction of multiple contrast agents has received little attention with respect to these emerging applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.