Abstract
The hysteresis behavior of a linear stroke magnetorheological damper is characterized for several magnetic fields and sinusoidal excitations over a nominal operational frequency range of 1.0 - 3.0 Hz. The behavior of the damper is inadequately modeled using the equivalent viscous damping and the complex modulus. Therefore, four different non-linear modeling perspectives are discussed for purposes of system identification procedures, including: (1) nonlinear Bingham plastic model, (2) nonlinear biviscous model, (3) nonlinear hysteretic biviscous model, and (4) nonlinear viscoelastic plastic model. The first three nonlinear models are piecewise continuous in velocity. The fourth model is piecewise smooth in velocity. The parameters for each model are identified from an identification set of experimental data, these parameters are then used to reconstruct the force vs. displacement and the force vs. velocity hysteresis cycles for the respective model. Model performance is evaluated by calculating equivalent viscous damping and force time history errors between the model fit and the experimental data. In addition to the identification study, a validation study was done. Model parameters were calculated for offset values of current and frequency. These intermediate parameters were used to calculate hysteresis cycles which were compared with a second set of experimental data, a validation data set. The results from both identification and validation studies of the MR damper behavior are presented in this paper, including calculated damping and force time history errors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.