Abstract

PurposeIdiopathic pulmonary fibrosis (IPF) is characterized by the accumulation of extracellular matrix (ECM) protein in the lungs. Transforming growth factor (TGF) β-induced ECM protein synthesis contributes to the development of IPF. Tranilast, an anti-allergy drug, suppresses TGFβ expression and inhibits interstitial renal fibrosis in animal models. However, the beneficial effects of tranilast or its mechanism as a therapy for pulmonary fibrosis have not been clarified.MethodsWe investigated the in vitro effect of tranilast on ECM production and TGFβ/SMAD2 pathway in TGFβ2-stimulated A549 human alveolar epithelial cells, using quantitative polymerase chain reaction, Western blotting, and immunofluorescence. In vitro observations were validated in the lungs of a murine pulmonary fibrosis model, which we developed by intravenous injection of bleomycin.ResultsTreatment with tranilast suppressed the expression of ECM proteins, such as fibronectin and type IV collagen, and attenuated SMAD2 phosphorylation in TGFβ2-stimulated A549 cells. In addition, based on a wound healing assay in these cells, tranilast significantly inhibited cell motility, with foci formation that comprised of ECM proteins. Histological analyses revealed that the administration of tranilast significantly attenuated lung fibrosis in mice. Furthermore, tranilast treatment significantly reduced levels of TGFβ, collagen, fibronectin, and phosphorylated SMAD2 in pulmonary fibrotic tissues in mice.ConclusionThese findings suggest that tranilast inhibits pulmonary fibrosis by suppressing TGFβ/SMAD2-mediated ECM protein production, presenting tranilast as a promising and novel anti-fibrotic agent for the treatment of IPF.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.