Abstract
Metal alkylamide compounds, such as tetrakis(ethylmethylamido) hafnium (TEMAH), represent a technologically important class of metalorganic precursors for the deposition of metal oxides and metal nitrides via atomic layer deposition (ALD) or chemical vapor deposition. The development of in situ diagnostics for processes involving these compounds could be beneficial in, e.g., developing deposition recipes and validating equipment-scale simulations. This report describes the performance of the combination of two techniques for the simultaneous, rapid measurement of the three major gas phase species during hafnium oxide thermal ALD using TEMAH and water: TEMAH, water, and methylethyl amine (MEA), the only major reaction by-product. For measurement of TEMAH and MEA, direct absorption methods based on a broadband infrared source with different mid-IR bandpass filters and utilizing amplitude modulation and synchronous detection were developed. For the measurement of water, wavelength modulation spectroscopy utilizing a near-IR distributed feedback diode laser was used. Despite the relatively simple reactor geometry employed here (a flow tube), differences were easily observed in the time-dependent species distributions in 300 mL/min of a helium carrier gas and in 1000 mL/min of a nitrogen carrier gas. The degree of TEMAH entrainment was lower in 300 mL/min of helium compared to that in 1000 mL/min of nitrogen. The capability to obtain detailed time-dependent species concentrations during ALD could potentially allow for the selection of carrier gas composition and flow rates that would minimize parasitic wall reactions. However, when nitrogen was employed at the higher flow rates, various flow effects were observed that, if detrimental to a deposition process, would effectively limit the upper range of useful flow rates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.