Abstract

Biomass fires in Indonesia emit high levels of greenhouse gases and particulate matter, key contributors to global climate change and poor air quality in south-east Asia. In order to better understand the drivers of biomass fires across Indonesia over multiple years, we examined the distribution and probability of fires in Sumatra, Kalimantan (Indonesian Borneo) and Papua (western New Guinea) over four entire calendar years (2002, 2005, 2011 and 2015). The 4 years of data represent years with El Niño and La Niña conditions and high levels of data availability in the study region. Generalised linear mixed-effects models and zero-inflated negative binomial models were used to relate fire hotspots and a range of spatial predictor data. Geographic differences in occurrences of fire hotspots were evident. Fire probability was greatest in mixed-production agriculture lands and in deeper, degraded peatlands, suggesting anthropogenic activities were strong determinants of burning. Drought conditions in El Niño years were also significant. The results demonstrate the importance of prioritising areas of high fire probability, based on land use and other predisposing conditions, in effective fire management planning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.