Abstract

LST8, a Saccharomyces cerevisiae gene encoding a 34-kD WD-repeat protein, was identified by mutations that caused defects in sorting Gap1p to the plasma membrane. Here, we report that the Gap1p sorting defect in the lst8-1 mutant results from derepression of Rtg1/3p activity and the subsequent accumulation of high levels of intracellular amino acids, which signal Gap1p sorting to the vacuole. To identify the essential function of Lst8p, we isolated lst8 mutants that are temperature-sensitive for growth. These mutants show hypersensitivity to rapamycin and derepressed Gln3p activity like cells with compromised TOR pathway activity. Like tor2 mutants, lst8 mutants also have cell wall integrity defects. Confirming a role for Lst8p in the TOR pathway, we find that Lst8p associates with both Tor1p and Tor2p and is a peripheral membrane protein that localizes to endosomal or Golgi membranes and cofractionates with Tor1p. Further, we show that a sublethal concentration of rapamycin mimics the Gap1p sorting defect of an lst8 mutant. Finally, the different effects of lst8 alleles on the activation of either the Rtg1/3p or Gln3p transcription factors reveal that these two pathways constitute distinct, genetically separable outputs of the Tor–Lst8 regulatory complex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.