Abstract

A least-squares (LS) channel estimation (CE) technique for mobile OFDM communications over a rapidly time-varying frequency-selective fading channel is investigated in this paper. The proposed technique keeping the comb-type pilot arrangement can achieve low error probability by accurately estimating channel impulse response (CIR) and effectively tracking rapid CIR variations. In addition, the LS CE technique proposed here is conducted in the time domain (TD); meanwhile, a generic estimator is, thus, performed serially block by block without assistance from a priori channel information and without increasing computational complexity. By taking advantage of linearly frequency-modulated (LFM) or pseudorandom signals that are transceived for the purpose of sounding pilot subchannels, the proposed LS channel estimator (CE) can inherently perform pseudo-noise (PN) matched filtering (MF) to suppress multipath interference (MPI) caused by frequency-selective fading and inter-carrier-interference (ICI) resulting from data subchannels. The dual optimality of the LFM and PN pilot symbols is verified for both time-domain (TD) and frequency-domain (FD) CEs. Furthermore, the proposed technique also exhibits good resistance against residual timing errors occurring with the DFT demodulation. Extensive computer simulations in conjunction with statistical derivations show the superiority of the proposed technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.