Abstract

Recently, nuclear norm-based low rank representation (LRR) methods have been popular in several applications, such as subspace segmentation. However, there exist two limitations: one is that nuclear norm as the relaxation of rank function will lead to the suboptimal solution since nuclear norm-based minimization subproblem tends to the over-relaxations of singular value elements and treats each of them equally; the other is that solving LRR problems may cause more time consumption due to involving singular value decomposition of the large scale matrix at each iteration. To overcome both disadvantages, this paper mainly considers two tractable variants of LRR: one is Schatten-p norm minimization-based LRR (i.e., SpNM_LRR) and the other is Schatten-p norm factorization-based LRR (i.e., SpNFLRR) for p=1, 2/3 and 1/2. By introducing two or more auxiliary variables in the constraints, the alternating direction method of multiplier (ADMM) with multiple updating variables can be devised to solve these variants of LRR. Furthermore, both computational complexity and convergence property are given to evaluate nonconvex multiblocks ADMM algorithms. Several experiments finally validate the efficacy and efficiency of our methods on both synthetic data and real world data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.