Abstract

This paper deals with linear-quadratic control problem for a catalytic flow reversal reactor using an infinite dimensional Hilbert space representation of the system. A LQ-controller is developed on the basis of the catalytic reactor with unidirectional flow. The controller is formulated to keep the distribution of the temperature along the axis of the reactor at stationary state by using the fluid flow velocity. We study the application of the controller on the catalytic reactor with reverse flow operation. We take advantage of the two-time scale characteristic of catalytic tubular reactors to develop a controller that requires only the measurement of the temperature along the axis of the reactor. Using the infinite dimensional state space, a state LQ-feedback operator is computed via the solution of a Riccati differential equation. The developed controller is tested numerically for the catalytic combustion of lean methane emissions in CFRR unit and implemented for a reactor configuration at the CANMET Energy Technology Centre Varennes, Quebec, Canada, and currently experimental tests are underway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.