Abstract

In this paper, we address the analysis and state-feedback synthesis problems for linear parameter-varying (LPV) systems with parameter-varying time delays. It is assumed that the state-space data and the time delays depend on parameters that are measurable in real-time and vary in a compact set with bounded variation rates. We explore the delay-dependent stability and the induced L/sub 2/ norm performance of these systems using parameter-dependent Lyapunov functionals. In addition, the state-feedback control synthesis problem is examined when a variable state delay or input delay is present. Both analysis and synthesis conditions are formulated in terms of linear matrix inequalities (LMIs) that can be solved via efficient interior-point algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.