Abstract
The surface morphology, microstructural, and optical properties of indium gallium nitride (InGaN) films grown by plasma-assisted molecular beam epitaxy under low growth temperatures and slightly nitrogen-rich growth conditions are studied. The single-phase InGaN films exhibit improved defect density, an absence of stacking faults, efficient In incorporation, enhanced optical properties, but a grain-like morphology. With increasing In content, we observe an increase in the degree of relaxation and a complete misfit strain relaxation through the formation of a uniform array of misfit dislocations at the InGaN/GaN interface for InGaN films with indium contents higher than 55–60%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.