Abstract

Ce-doped ZnO nanorod arrays were grown on zinc foils by a hydrothermal method at 180°C. The effects of Ce-doping on the structure and optical properties of ZnO nanorods were investigated in detail. The characterisation of the rod array with X-ray diffraction and X-ray photoelectron spectroscopy indicated that Ce3+ ions were incorporated into the ZnO lattices. There were no diffraction peaks of Ce or cerium oxide in the pattern. From UV-Vis spectra, we observed a red shift in the wavelength of absorption and decreased band gap due to the Ce ion incorporation in ZnO. The photoluminescence integrated intensity ratio of the UV emission to the deep-level green emission (I UV/I DLE) was 1.25 and 2.87, for ZnO and Ce-doped ZnO nanorods, respectively, which shows a great promise for the Ce-doped ZnO nanorods with applications in optoelectronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.