Abstract

AbstractLow‐power, nonvolatile memory is an essential electronic component to store and process the unprecedented data flood arising from the oncoming Internet of Things era. Molybdenum disulfide (MoS2) is a 2D material that is increasingly regarded as a promising semiconductor material in electronic device applications because of its unique physical characteristics. However, dielectric formation of an ultrathin low‐k tunneling on the dangling bond‐free surface of MoS2 is a challenging task. Here, MoS2‐based low‐power nonvolatile charge storage memory devices are reported with a poly(1,3,5‐trimethyl‐1,3,5‐trivinyl cyclotrisiloxane) (pV3D3) tunneling dielectric layer formed via a solvent‐free initiated chemical vapor deposition (iCVD) process. The surface‐growing polymerization and low‐temperature nature of the iCVD process enable the conformal growing of low‐k (≈2.2) pV3D3 insulating films on MoS2. The fabricated memory devices exhibit a tunable memory window with high on/off ratio (≈106), excellent retention times of 105 s with an extrapolated time of possibly years, and an excellent cycling endurance of more than 103 cycles, which are much higher than those reported previously for MoS2‐based memory devices. By leveraging the inherent flexibility of both MoS2 and polymer dielectric films, this research presents an important milestone in the development of low‐power flexible nonvolatile memory devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.