Abstract
The low-noise bias reliability of 0.1 µm T-gate Al0.48In0.52As/Ga0.47In0.53As modulation-doped field effect transistors (MODFETs), grown on GaAs was investigated. Al0.48In0.52As/Ga0.47In0.53As MODFETs were grown on mismatched GaAs substrates by the insertion of a compositionally linearly-graded low-temperature buffer (LGLTB) layer. Transmission electon microscopy (TEM) analysis of the layers indicates that the majority of the defects are confined to the buffer layer. Although the LGLTB layer is highly defective, there is no indication that the low-bias reliability of these devices is compromised. MODFETs with a LGLTB layer show reliability under high temperature operating life (HTOL) tests at a drain bias of 1 V and 200 mA/mm, comparable to reported MODFETs grown lattice-matched to InP. The extrapolated mean-time-to-failure (MTTF), based on the drift of the zero-gate bias current, Idss, at temperatures of 200 to 240°C, exceeds 106 h at a channel temperature of 125°C. The drift in Idss arises primarily from a positive shift in threshold voltage. The low-bias Rd degradation behavior of these devices is also similar to devices grown on InP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.