Abstract

To study the evolution of camptothecin (CPT) resistance, we have established two small-cell lung cancer cell lines with low (3.2-fold, NYH/CAM15) and high (18-fold, NYH/CAM50) resistance to CPT by stepwise drug exposure. NYH/CAM50 cells had reduced topoisomerase I (topo I) content and activity, and consequently CPT-induced DNA single strand breaks (SSBs) were reduced, as measured by alkaline elution. In contrast, NYH/CAM15 cells had identical topo I content and activity as compared with wild-type (wt) cells. CPT-mediated SSBs and the rate of their reversal after drug removal were also equal in wt and NYH/CAM15 cells, as were doubling time, the fraction of cells in S-phase and DNA synthesis rate in response to CPT. As the conversion of DNA SSBs to DNA double strand breaks (DSBs) is thought to represent a critical event leading to cell death, we measured DNA DSBs by neutral elution. In contrast to DNA SSBs, CPT induced fewer DNA DSBs in NYH/CAM15 than in wt cells. DNA flow cytometry showed that, in CPT-treated cells, the G1 phase was emptied as cells accumulated in late S- and G2M phase. A Spearman rank correlation showed that depletion of G1 and accumulation in late S and G2M correlated to CPT sensitivity in these three cell lines. In conclusion, acquired resistance to CPT can occur without a reduction in either topo I enzyme or CPT-induced cleavable complex formation, while a decrease in the level of CPT-induced DNA DSBs may be of major importance in the early stages of CPT resistance.

Highlights

  • Induced fewer DNA double strand breaks (DSBs) in NYH/CAM15 than in wt cells

  • DNA flow cytometry showed that, in CPT-treated cells, the G, phase was emptied as cells accumulated in late S- and G2M phase

  • Acquired resistance to CPT can occur without a reduction in either topo I enzyme or CPT-induced cleavable complex formation, while a decrease in the level of CPT-induced DNA DSBs may be of major importance in the early stages of CPT resistance

Read more

Summary

Introduction

Induced fewer DNA DSBs in NYH/CAM15 than in wt cells. DNA flow cytometry showed that, in CPT-treated cells, the G, phase was emptied as cells accumulated in late S- and G2M phase. A Spearman rank correlation showed that depletion of G1 and accumulation in late S and G2M correlated to CPT sensitivity in these three cell lines. Acquired resistance to CPT can occur without a reduction in either topo I enzyme or CPT-induced cleavable complex formation, while a decrease in the level of CPT-induced DNA DSBs may be of major importance in the early stages of CPT resistance

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.