Abstract

Low-level detection of ethanol and H 2S was achieved with thermally modulated WO 3 nanoparticle gas sensors. Nanoparticle WO 3 films, with a mean grain size of ∼5 nm and a thickness of ∼20 μm, were produced by advanced reactive gas evaporation onto alumina substrates. The working temperature of the sensor was periodically modulated between 150 and 250 °C, and the response was analysed by fast Fourier transform (FFT) and discrete wavelet transform (DWT) methods in order to extract characteristic parameters from the sensors’ response transients. After calibration of the sensor for low concentrations of ethanol and H 2S, it was possible to detect as little as 200 ppb of ethanol and 20 ppb of H 2S (both of them dry gases) with good accuracy. Long-term sensor behaviour was assessed. Unsupervised and supervised linear pattern recognition methods, specifically principal component analysis (PCA) and discriminant factor analysis (DFA), were successfully applied to distinguish the investigated gases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.