Abstract

Hybrid organic-inorganic halide perovskite solar cells have emerged as leading candidates for third-generation photovoltaic technology. Despite the rapid improvement in power conversion efficiency (PCE) for perovskite solar cells in recent years, the low-frequency carrier kinetics that underlie practical roadblocks such as hysteresis and degradation remain relatively poorly understood. In an effort to bridge this knowledge gap, we perform here correlated low-frequency noise (LFN) and impedance spectroscopy (IS) characterization that elucidates carrier kinetics in operating perovskite solar cells. Specifically, we focus on planar cell geometries with a SnO2 electron transport layer and two different hole transport layers-namely, poly(triarylamine) (PTAA) and spiro-OMeTAD. PTAA and spiro-OMeTAD cells with moderate PCEs of 5-12% possess a Lorentzian feature at ∼200 Hz in LFN measurements that corresponds to a crossover from electrode to dielectric polarization. In comparison, spiro-OMeTAD cells with high PCEs (>15%) show 4 orders of magnitude lower LFN amplitude and are accompanied by a cyclostationary process. Through a systematic study of more than a dozen solar cells, we establish a correlation with noise amplitude, PCE, and fill factor. Overall, this work establishes correlated LFN and IS as an effective methodology for quantifying low-frequency carrier kinetics in perovskite solar cells, thereby providing new physical insights that can rationally guide ongoing efforts to improve device performance, reproducibility, and stability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.