Abstract
In the electricity market environment, load-serving entities (LSEs) will inevitably face risks in purchasing electricity because there are a plethora of uncertainties involved. To maximize profits and minimize risks, LSEs need to develop an optimal strategy to reasonably allocate the purchased electricity amount in different electricity markets such as the spot market, bilateral contract market, and options market. Because risks originate from uncertainties, an approach is presented to address the risk evaluation problem by the combined use of the lower partial moment and information entropy (LPME). The lower partial moment is used to measure the amount and probability of the loss, whereas the information entropy is used to represent the uncertainty of the loss. Electricity purchasing is a repeated procedure; therefore, the model presented represents a dynamic strategy. Under the chance-constrained programming framework, the developed optimization model minimizes the risk of the electricity purchasing portfolio in different markets because the actual profit of the LSE concerned is not less than the specified target under a required confidence level. Then, the particle swarm optimization (PSO) algorithm is employed to solve the optimization model. Finally, a sample example is used to illustrate the basic features of the developed model and method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.