Abstract

The yield of Earth-like planets will likely be a primary science metric for future space-based missions that will drive telescope aperture size. Maximizing the exoEarth candidate yield is therefore critical to minimizing the required aperture. Here we describe a method for exoEarth candidate yield maximization that simultaneously optimizes, for the first time, the targets chosen for observation, the number of visits to each target, the delay time between visits, and the exposure time of every observation. This code calculates both the detection time and multi-wavelength spectral characterization time required for planets. We also refine the astrophysical assumptions used as inputs to these calculations, relying on published estimates of planetary occurrence rates as well as theoretical and observational constraints on terrestrial planet sizes and classical habitable zones. Given these astrophysical assumptions, optimistic telescope and instrument assumptions, and our new completeness code that produces the highest yields to date, we suggest lower limits on the aperture size required to detect and characterize a statistically-motivated sample of exoEarths.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.