Abstract
A line l is a transversal to a family F of convex objects in ℝ d if it intersects every member of F. In this paper we show that for every integer d ⩾ 3 there exists a family of 2d−1 pairwise disjoint unit balls in ℝ d with the property that every subfamily of size 2d − 2 admits a transversal, yet any line misses at least one member of the family. This answers a question of Danzer from 1957. Crucial to the proof is the notion of a pinned transversal, which means an isolated point in the space of transversals. Here we investigate minimal pinning configurations and construct a family F of 2d−1 disjoint unit balls in ℝ d with the following properties: (i) The space of transversals to F is a single point and (ii) the space of transversals to any proper subfamily of F is a connected set with non-empty interior.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.