Abstract
We consider a variant of the Cops and Robbers game where the robber can movetedges at a time, and show that in this variant, the cop number of ad-regular graph with girth larger than 2t+2 is Ω(dt). By the known upper bounds on the order of cages, this implies that the cop number of a connectedn-vertex graph can be as large as Ω(n2/3) ift≥ 2, and Ω(n4/5) ift≥ 4. This improves the Ω($n^{\frac{t-3}{t-2}}$) lower bound of Frieze, Krivelevich and Loh (Variations on cops and robbers,J. Graph Theory, to appear) when 2 ≤t≤ 6. We also conjecture a general upper boundO(nt/t+1) for the cop number in this variant, generalizing Meyniel's conjecture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.