Abstract

• First thermal radiative measurement of copper with thin-film aluminum oxide coating. • Thin-film aluminum oxide coating preserves the low thermal emissivity of copper. • Analysis of dielectric thin-film coating on highly reflective metallic surfaces. Copper, due to its unique properties, has a huge technological importance to our society. However, the oxidation of copper remains an issue in numerous application areas. This is especially the case in visible and IR-band optics, where even minuscule oxide layers degrade the thermo-optical properties of copper surfaces. A solution possibly resides in the application of protective coatings, which can simultaneously impair the low thermal emittance of bare copper surfaces. The present paper examines the use of thin Al 2 O 3 layers as a protective coating for copper. Al 2 O 3 layers with thickness of 4.5, 9.1, 18.5 or 28.3 nm were deposited on polished copper discs using atomic layer deposition (ALD). The total hemispherical emissivity and absorptivity of these coated copper discs were measured from 20 K up to room temperature. The emissivity and absorptivity of the copper with ALD-deposited Al 2 O 3 layers increased with rising temperature and layer thickness. Nonetheless, the observed values stayed below 1.8%, allowing the use of the coated copper in systems where low emission or absorption of thermal radiation is needed. Alongside the experiments, we present a computer-based analysis and interpretation, which may be generally applied for prediction of temperature-dependent emittance of metallic surfaces coated with a thin polar dielectric layer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.