Abstract
Climate change is already resulting in extreme devastation in the earth, with carbon dioxide emissions produced by coal-fired power plants being the largest contributor. Therefore, integrated coal purchasing, blending, and distribution strategies are playing a more important role in large-scale coal-fired power enterprises due to the need to reduce carbon dioxide emissions and operational costs. In this study, a dynamic equilibrium strategy for integrated coal purchasing, blending, and distribution under an uncertain environment is proposed to reduce carbon dioxide emissions in large-scale coal-fired powered enterprises; the practicality and efficiency of which are verified using a real-world case. Sensitivity analyses under different carbon dioxide emissions levels and satisfactory degrees were also conducted to give insights into the conflict between economic development and environmental protection for large-scale coal-fired power enterprises, and balance short-term and long-term production plans. The results indicated that the proposed method was able to achieve economic-environmental coordination and sustainable development. Compared to previous studies, the developed model was found to be able to reduce carbon emissions by about 30% compared with the maximum carbon emissions and improve carbon emissions reduction performance to assist in mitigating climate change.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.