Abstract

Thick electrode with high-areal-capacity is a practical and promising strategy to increase the energy density of batteries, but development toward thick electrode is limited by the electrochemical performance, mechanical properties, and manufacturing approaches. In this work, we overcome these limitations and report an ultrathick electrode structure, called fiber-aligned thick or FAT electrode, which offers a novel electrode design and a scalable manufacturing strategy for high-areal-capacity battery electrodes. The FAT electrode uses aligned carbon fibers to construct a through-thickness fiber-aligned electrode structure with features of high electrode material loading, low tortuosity, high electrical and thermal conductivity, and good compression property. The low tortuosity of FAT electrode enables fast electrolyte infusion and rapid electron/ion transport, exhibiting a higher capacity retention and lower charge transfer resistance than conventional slurry-casted thick electrode design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.