Abstract

An optically pumped two-dimensional organic quasi-crystal microcavity laser is demonstrated based on conjugated polymer poly(2-methoxy, 5-(2'-3ethylhexyloxy)-1,4-phenylene vinylene) (MEH-PPV). The optical resonator consists of the octagonal quasi-crystal for light localization in-plane by the bandgap effect and the distributed Bragg reflector introduced between the slab-substrate interface by inhibiting the scattering and absorption of light in the substrate to achieve vertical confinement of the light. A modified point-defect traps and localizes photons into the microcavity, forcing the wave oscillation along the vertical waveguide. The experimental results show that the single-mode lasing action by optical pumping is observed at 602.2 nm with an FWHM of 0.7 nm. The threshold of lasing is lowered to 6.9 μJ/pulse.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.