Abstract

The autoxidation of NO• was studied in glass-like matrices of 2-methylbutane at 110 K and in a 8:3 v/v mixture of 2,2-dimethylbutane and n-pentane (rigisolve) at 80-90 K, by letting gaseous NO• diffuse into these solvents that were saturated with O2. In 2-methyllbutane, we observed a red compound. However, in rigisolve at 85-90 K, a bright yellow color appears that turns red when the sample is warmed by 10-20 K. The new yellow compound is a precursor of the red one and also diamagnetic. The UV-vis spectrum of the yellow compound contains a band which resembles that present in ONOO-. Because the red and yellow intermediates are not paramagnetic, we postulate that O═N-O-O• is in close contact with NO•, or with another O═N-O-O•. Diffusion of gaseous O2 into rigisolve saturated with NO• does not produce a color; however, a weak EPR signal (g = 2.010) is observed. This signal most likely indicates the presence of ONOO•. These findings complement our earlier observation of a red color at low temperatures and the presence of ONOO• in the gas phase (Galliker, B.; Kissner, R.; Nauser, T.; Koppenol, W. H. Chem. Eur. J. 2009, 15, 6161-6168), and they indicate that the termolecular autoxidation of nitrogen monoxide proceeds via the intermediate ONOO• and not via N2O2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.