Abstract

The effect of neutron irradiation on low-temperature deformation of Mo in two heat treatments, i.e. annealed and stress-relieved, was investigated. Specimens were irradiated at reactor coolant temperature (∼80 °C) to doses ranging from 7.2 × 10 −5 to 0.28 dpa in the High Flux Isotope Reactor. Tensile tests were carried out between −50 and 100 °C at strain rates of 1 × 10 −5–1 × 10 −2 s −1. Thermal activation analysis based on tensile data was performed to understand the low-temperature deformation mechanism. Irradiation softening and reduced dependence on test temperature and strain rate of the yield stress was observed in the annealed Mo after low-dose neutron irradiation (<∼0.003 dpa). Higher dose neutron irradiation caused athermal hardening only. The stress-relieved Mo showed a weaker dependence on test temperature and strain rate of the yield stress than the annealed Mo, and the dependence of the yield stress of the stress-relieved Mo was nearly unchanged after irradiation. Comparison of the experimental values of activation parameters with the theoretical predictions of dislocation models indicates that the Fleischer model of interactions of dislocations with tetragonal strains gave a better description of the activation process than the double-kink model, which implies a scavenging effect. The reduced test temperature and strain rate dependence following irradiation may be explained by the decreased effective stress due to trapping of interstitial solute species by neutron-produced defects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.