Abstract
Low-temperature specific heat (SH) is measured for the 12442-type KCa$_2$Fe$_4$As$_4$F$_2$ single crystal under different magnetic fields. A clear SH jump with the height of $\Delta C/T|_{T_c}$ = 130 mJ/mol K$^2$ is observed at the superconducting transition temperature $T_c$. It is found that the electronic SH coefficient $\Delta\gamma (H)$ quickly increases when the field is in the low-field region below 3 T and then considerably slows down the increase with a further increase in the field, which indicates a rather strong anisotropy or multi-gap feature with a small minimum in the superconducting gap(s). The temperature-dependent SH data indicates the presence of the $T^2$ term, which supplies further information and supports the picture with a line-nodal gap structure. Moreover, the onset point of the SH transition remains almost unchanged under the field as high as 9 T, which is similar to that observed in cuprates, and placed this system in the middle between the BCS limit and the Bose-Einstein condensation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.