Abstract

Basic development steps towards low-temperature molecular beam epitaxy of InP-based AlInAs/GaInAs multiple quantum wells are presented. The achievement of unstrained material and the adjustment of 1.55 μm emission necessitate modified growth conditions as compared to conventional growth. Single crystalline growth down to a temperature as low as 100°C was successfully achieved as indicated by the appearance of superlattice peaks in the X-ray diffraction spectra as well as 300 K photoluminescence emission. The temporal development of transmission changes after optical excitation (pump-probe techniques) in the low-temperature material is predominantly governed by two recombination paths. Modelling of this bi-exponential decay on the basis of a three-level approach delivers the characteristics of the main trap incorporated in the quantum well material when grown at low temperature. The physical nature of this trap is attributed to As Ga as supported by results of beryllium doping.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.